
Under review as submission to TMLR

Efficient Class-Incremental Segmentation Learning via Ex-
panding Visual Transformers

Anonymous authors
Paper under double-blind review

Abstract

Incrementally learning new semantic concepts while retaining existing information is fun-
damental for several real-world applications. Although the impact of backbone size and
architectural choices has been extensively studied in non-incremental computer vision tasks
for efficiency concerns, class-incremental semantic segmentation models have so far focused
primarily on large backbones, without offering a fair comparison in terms of model size.
In this work, we propose a fairer study across existing class-incremental semantic segmen-
tation methods, focusing on the models efficiency with respect to their memory footprint.
Moreover, we propose TILES (Transformer-based Incremental Learning for Expanding Seg-
menter), a novel approach exploiting small-size ViT backbones efficiency to offer an alter-
native solution where severe memory constraints are applied. It is based on expanding the
architecture with the increments, allowing to learn new tasks while retaining old knowledge
within a limited memory footprint. Besides, in order to tackle the background semantic
shift, we apply adaptive losses specific to the incremental branches, while balancing old
and new knowledge. Furthermore, we exploit the confidence of each incremental task to
propose an efficient branch merging strategy. TILES outperforms several previous methods
on various challenging benchmarks while using up to 14 times fewer parameters.

1 Introduction

20 40 60 80 100
Number of parameters (M)

60

65

70

75

80

85

90

95

100

Pe
rfo

rm
an

ce
 K

R
(%

)

TILES (ViT-B)
TILES (ViT-S)
TILES (ViT-T)
Incrementer (ViT-B)
Incrementer (ViT-S)
Incrementer (ViT-T)

Figure 1: Model size vs. performance
(Knowledge Remaining) for TILES and In-
crementer with 3 different backbones on the
Pascal-VOC 15-5 overlapped scenario. Er-
ror bars represent the variations of TILES
through iterations.

In a traditional non-incremental learning context, machine
learning models process the whole training data at once. How-
ever, incrementally learning new information held by new
collected data while retaining past knowledge is a critical
capacity needed in real-word applications such as robotics,
self-driving vehicles or video surveillance, as past data is not
always available for storage or privacy reasons. In a more
specific context, Class-Incremental (CI) learning can be more
constrained when the new data features new classes not seen
previously without bringing anymore knowledge about pre-
viously learnt classes. While humans can learn to recognize
new objects continuously without forgetting the ones previ-
ously seen, deep learning models can suffer from performance
degradation on previously learned tasks. This phenomenon
introduced by Mccloskey & Cohen (1989) is known as catas-
trophic forgetting, and happens especially if the new classes
are learned with no supervision on past knowledge.

This problem has received much attention from the research
community for the task of image classification (IC). Several
approaches have proposed to expand the model architecture
to learn new tasks such as Yan et al. (2021) or to retain a por-
tion of the previous dataset and use it in subsequent steps. Other researchers have tried to solve CI learning

1

Under review as submission to TMLR

in a more challenging setting, where no old data is available and with no or limited model expansion. Ap-
proaches based on transferring information from the old to the new network known as Knowledge Distillation
(KD) presented by Hinton et al. (2015) have shown great success in alleviating catastrophic forgetting for
IC. Architecture-wise, all first methods were CNN based until DyTox (Douillard et al. (2022)) which demon-
strated good performances while using a Visual Transformer (ViT) based architecture (Dosovitskiy et al.
(2021)) with very few additional parameters at each step.

However, less attention has been given to Class-Incremental Semantic Segmentation (CI-SS). This task holds
one more challenge which is the semantic shift of the background: the semantic meaning of the background
changes at each step since past and future classes are considered as background relative to the current step
(which only relies on labels of current classes). This is why direct adaptations of CI-IC approaches do not
perform well for CI-SS. Several solutions have been proposed to deal with this challenge such as self-inpainting
by Cermelli et al. (2020). Besides, while most approaches dealing with CI-SS use Deeplab-v3 (Chen et al.
(2017)) with a CNN backbone, more recently, CoinSeg (Zhang et al. (2023)), NeST (Xie et al. (2024)) and
Incrementer (Shang et al. (2023)) leveraged ViT-based architectures and outperformed CNN-based models
while employing large ViT backbones. However, to the best of our knowledge, no benchmark exists to fairly
compare these various methods. Moreover, despite the various studies providing smaller sized ViT backbones
on several computer vision tasks (Strudel et al. (2021); Liu et al. (2021)), no such small models have been
proposed for CI-SS.

In this work, we provide a fairer comparison across previous state-of-the-art (SOTA) CI-SS approaches, by
taking into account the performance of the used backbones having different memory footprints, disentan-
gling the improvements attributable to the architectural design from those resulting from the incremental
learning strategy. Besides, we demonstrate that previous ViT-based CI-SS methods using large backbones
are not adapted for use cases with severe memory constraints where smaller backbones should be used. As
an alternative, we propose a novel approach to solve limited footprint CI-SS based on an expanding ViT
architecture. Similarly to Incrementer, we choose Segmenter architecture (Strudel et al. (2021)) for its class
embeddings which represents an efficient way to retain knowledge on classes. In contrast, our method fea-
tures an expanding architecture which helps alleviate the semantic shift of the background, especially when
using small backbones. Therefore, our Transformer-based Incremental Learning for Expanding Segmenter
(TILES) appears better suited to the constrained-memory CI-SS scenarios as it largely outperforms previous
SOTA methods when limited-sized backbones are applied (see Figure 1 for an illustration). It is also able to
outperform several previous approaches while using up to 14 times fewer parameters. The effectiveness of
the proposed framework is demonstrated through extensive experiments on the CI-SS benchmarks Pascal-
VOC (Everingham et al. (2010)) and ADE20k (Zhou et al. (2019)). Our contributions can be formulated as
follows:

• We provide a fair comparison across different CI-SS methods while studying their behaviors and
efficiencies. Besides, we demonstrate a big performance drop of the best SOTA approach when
using smaller backbones.

• Alternatively, we propose TILES to solve CI-SS with critical memory constraints. We demonstrate
that the proposed expanding mechanism dedicating balanced task-specialized branches alongside
a suitable loss computation and a branch merging technique, are the more efficient to cope with
constrained-memory cases.

• We improve the SOTA performance for CI-SS using limited-sized backbones, on two challenging
benchmarks.

2 Related work

2.1 Class-incremental learning

We can distinguish three main families of approaches solving CI learning for image classification, object
detection or semantic segmentation:

2

Under review as submission to TMLR

Replay methods: The strategy here is to use data holding past knowledge in the subsequent steps. This
can be done either by saving images or feature samples from the previous datasets at each step (Rebuffi et al.
(2017); Lopez-Paz & Ranzato (2017); Pellegrini et al. (2020)), by training a generative model to generate
additional training samples similar to previous datasets (Shin et al. (2017); Liu et al. (2020)), or by using
web scraping to collect samples from the internet which will be added to the new dataset (Maracani et al.
(2021)). This idea can provide good performances since there is limited or no catastrophic forgetting, but it
is contrary to privacy constraints (e.g health, industrial or defense sensitive data). In this work, we do not
consider this family of approaches.

Expansion methods: These approaches try to find an efficient way to make the model evolve throughout
the epochs by allocating new parameters to the new classes. This strategy has already proven its worth
in CI-IC by achieving good performance in Yan et al. (2021). DyTox (Douillard et al. (2022)) is the first
approach to use an expanding transformer-based architecture with limited sized backbones for CI-IC. It
can dynamically process new knowledge by moderately increasing the number of parameters leading to
performance similar to SOTA CNN-based approaches.

Regularization methods: This family of approaches focuses on how the model learns at each step and
can be further divided into weight regularization and functional-based methods. On the one hand, weight
regularization approaches, especially used for CI-IC, put constraints on the weights having high impact on
previous tasks (Kirkpatrick et al. (2017)). On the other hand, functional-based approaches compute losses
measuring the distance between a specific layer outputs produced by the previous and the new models re-
spectively (Cermelli et al. (2020); Shmelkov et al. (2017); Phan et al. (2022)). These methods are the most
popular thanks to their simplicity and capacity to continuously learn new classes. In particular, Knowl-
edge Distillation (KD) proposed by Hinton et al. (2015) has shown great success reducing the catastrophic
forgetting especially for CI-IC (Rebuffi et al. (2017)).

2.2 Class-incremental semantic segmentation

Several methods have tried to solve CI-SS using KD, given its success for CI-IC. However, the Cross Entropy
Loss (LCE) and the KD Loss (LKD) contradict each other for CI-SS because of the semantic shift of the
background. In fact, previously seen classes are labeled in the new ground-truth as background, hence a
contradiction with the old model’s predictions. Similarly, the new classes are classified as background by the
old model, hence a contradiction with the new ground-truth labels. Therefore, this opposition makes the
model cut the trade-off between rigidity and flexibility in an inefficient way.

MiB (Cermelli et al. (2020)) is the first to tackle the background semantic shift challenge by changing the
new model outputs depending on which loss is computed. Indeed, the new model predictions corresponding
to new classes are considered as background in the LKD. Similarly, those corresponding to old classes
are considered as background in the LCE . PLOP (Douillard et al. (2021)) deals with the background
semantic shift in a different manner, by joining the predictions made by the previous model and the new
ground truth to generate a new target. Later, SDR (Michieli & Zanuttigh (2021)) and UCD (Yang et al.
(2022)) show that using contrastive learning on lower dimension representations offers a powerful way to
retain knowledge. RCIL (Zhang et al. (2022a)) uses representation compensation to merge old and new
parameters while MicroSeg (Zhang et al. (2022b)) addresses the challenge of background shift by leveraging
regional objectness to identify and preserve previously learned classes. Moreover, RBC (Zhao et al. (2022))
corrects context bias through a context-rectified image-duplet learning scheme, a biased-context-insensitive
consistency loss, and an adaptive class-balanced learning strategy. Finally, Bg_Adapt (Zhang & Gao (2024))
leverages a background adaptation mechanism based on residual modeling to better handle background
category evolution. Even though these methods propose different incremental strategies, they are all based
on the Deeplab-v3 (Chen et al. (2017)) architecture with a ResNet (He et al. (2016)) backbone as the core
model on which the CI-SS strategies are applied. More recently, two methods supporting both semantic and
panoptic segmentation adopt the Mask2Former Cheng et al. (2022) architecture while always considering a
ResNet backbone. In fact, ComFormer (Cermelli et al. (2023)) frames segmentation as a mask-classification
task, and overcomes catastrophic forgetting through a novel adaptive distillation loss combined with mask-
based pseudo-labeling. ECLIPSE (Kim et al. (2024)) freezes the base model and incrementally fine-tunes

3

Under review as submission to TMLR

only small sets of visual prompt embeddings, supplemented by a logit manipulation strategy to combat
semantic drift and error propagation.

Lately, ViT-based architectures and backbones have been used to solve CI-SS trying to benefit from these
architecture’s efficiencies. On the one hand, two recent methods are based on a SwinB backbone (Liu
et al. (2021)): first, CoinSeg (Zhang et al. (2023)) uses a discriminative feature representation thanks to
inter-class and intra-class contrastive losses, while NeST (Xie et al. (2024)) proposes a pre-training method
that transforms existing classifiers to initialize new ones, enhancing alignment with the model backbone.
On the other hand, Incrementer (Shang et al. (2023)) takes advantage from the Segmenter (Strudel et al.
(2021)) class embeddings to add new knowledge while retaining old information, based on a ViT-B backbone
(Dosovitskiy et al. (2021)). It also proposes to adapt the LKD to only focus on old class regions and to
regularise training alleviating both overfitting on new classes and confusion of similar semantic concepts.
Since these methods are based on different backbones, they re-implement some previous methods using the
same backbone for performance comparison such as MiB(ViT-B), RBC(ViT-B) or MicroSeg(SwinB).

2.3 Positioning of our method

At each step, the new data has most likely different statistical properties from the data seen previously.
This distributional shift has a huge impact on the optimization of the model weights. This is enhanced in
the case of CNNs where Batch Normalization (BN) layers are usually present, having a high dependency
to the data distribution. Thus, if the distributional shift is not detected, the model will inevitably suffer
from stronger catastrophic forgetting (Zhao et al. (2021)). Therefore, transformer-based architectures could
be more appropriate for incremental learning. Indeed, Li et al. (2022) claim that they are better continual
learners because they do not rely on BN.

Moreover, a very important aspect of real world applications is the memory footprint. Indeed, designing
lightweight AI models is essential in edge computing environments, where optimizing resource usage for tasks
like SS directly translates to more available computational power for other concurrent tasks, while preserving
battery life. For instance, this is important for visual tasks on mobile phones, embedded systems in drones or
autonomous robots relying on compact hardware. However, contrary to the non-incremental SS approaches
where the efficiency and the performance drop using smaller backbones have been extensively studied, only
big backbones (ViT-B and SwinB) have been tested for ViT-based CI-SS methods. Uncertainty on how the
incremental strategies would perform with smaller backbones makes them impractical for real-world use.
Besides, it would be interesting to build new strategies for these constrained cases.

Furthermore, during the training of previous SOTA approaches, the rigidity-elasticity trade-off is usually
handled by a hyperparameter balancing the LCE of the predictions with relation to the new ground truth
labels, and the LKD between the new and the old model’s predictions. However, the values of the two losses
vary depending on the confidence acquired by the old model, the number of classes for each task, and the
number of images used for the training of each step. Previous models did not take this into account and
applied a fixed hyperparameter independent of the task. In this work, we aim to tackle this, for a better
trade-off between old and new classes, by introducing an adaptive balancing parameter during training,
alongside a weighting branch merging parameter during inference.

To sum up our positioning, the proposed method TILES aims i) to present a solution for scenarios with
severe memory constraints by exploiting the efficient transformer architectures for CI-SS; ii) to leverage the
effectiveness of both knowledge distillation and expansion methods for incremental learning to tackle the
semantic shift of the background iii) while minimizing the parameter expansion at each increment and iv)
without retaining data for privacy concerns.

3 Method

3.1 Problem definition

The goal of CI-SS is to learn a model able to perform well on an increasing set of semantic classes. Let T
denote the total number of steps or increments at which a model has to learn a new task to cope with a new

4

Under review as submission to TMLR

subset of classes in addition to previously learned classes. At step t ∈ {1, . . . , T}, let Dt denote an additional
subset of annotated data: Dt = {(xt

i, yt
i)}i where xt

i is the i-th image and yt
i is the corresponding ground truth

of the same size, where each pixel is classified in Ct, the set of semantic classes at step t. The challenge is
that the foreground classes are supervised only at one step, i.e. Cn

⋂
Cm = ∅, ∀n, m ∈ {1, . . . , T}, n ̸= m,

even if older classes continue to appear in new images or if future classes appeared in the older steps they
are both considered as background. However, at the end, the model should still be able to retain knowledge
on all seen classes C1 ⋃

C2 ⋃
...

⋃
CT .

3.2 Overview

We propose TILES as an expanding CI-SS approach that is convenient for scenarios with severe memory
constraints. In fact, we prove that while it is possible for big encoders/decoders to encompass several semantic
concepts learnt during different steps with minimum forgetting thanks to their considerable number of
parameters, we argue that this is not possible when much smaller backbones are used, which we demonstrate
in sec. 4.2. Therefore, we design TILES allowing limited expansion, particularly useful and necessary for
these cases, while assuring a limited memory footprint. Similar to Incrementer (Shang et al. (2023)) our
approach is based on the Strudel et al. (2021) architecture: Segmenter which uses a fully transformer encoder-
decoder to generate class masks for SS. To adapt this architecture to CI learning, at each step t, we add Kt

class embeddings to represent the Kt newly added classes Ct. This technique offers an efficient encoding of
the class knowledge which could be saved in the next steps helping the model to retain information through
its weights. We use a shared encoder between all tasks. However, we adopt an expanding architecture where
each task has its specific specialized decoder branch b. The training of different steps of TILES is presented
in Figure 2 (left). Note that the decoders are adapted so that the expansion is not prodigal in terms of
number of parameters.

During inference, the input image is processed by the encoder, then, by each of the T branches of the decoder
in parallel. A final branch merging module is used to aggregate the predictions of different branches such
as illustrated in Figure 3. Thanks to this expanding strategy, there is no semantic shift in each branch
individually. The branch merging module carries out the choice of the final result using branch weights.

The different learning strategies in the initial step and then, how new branches are built on top of the
previous model to segment all classes are detailed hereafter.

3.3 Encoder

The input image is denoted by xt
i ∈ RH×W ×C where H, W and C are respectively the height, width and

number of channels of the image. xt
i is divided into patches of size P × P pixels to generate the sequence

of patches xt
i = [xt

i,1, ..., xt
i,N] ∈ RN×P 2×C , where N is the number of patches i.e. N = HW

P 2 . These
patches are then flattened, linearly projected and added to learnable position embeddings to generate the
sequence wt

i = [wt
i,1, . . . , wt

i,N] ∈ RN×D, D being the embedding dimension. The encoder generates an
output zt

i = [zt
i,1, . . . , zt

i,N] ∈ RN×D. The encoder weights are updated at each increment.

3.4 Decoder incremental branches

To retain knowledge on classes, we use the learnable class embeddings as introduced in Segmenter (Strudel
et al. (2021)) which are noted for the b-th branch (i.e. task) as clsb = [cls1

b , . . . , clsKb

b] ∈ RKb×D. At the entry
of each branch, the class embeddings clsb are concatenated to the encoder outputs zt

i . Hence, the sequence
fed into the Mask Decoder is dt

i,b = [zt
i,1, . . . , zt

i,N , cls1
b , . . . , clsKb

b] ∈ R(N+Kb)×D. The self-attention block
decoder (SAB) then generates the sequence d′

i,b
t = [z′

i,1
t, . . . , z′

i,N
t, cls′

b
1, . . . , cls′

b
Kb] ∈ R(N+Kb)×D made of

the transformed class embeddings cls′
b ∈ RKb×D and transformed encoded patches z′

i
t ∈ RN×D. The class

embeddings and encoded patches are then respectively linearly projected, and the Kb masks are generated
from their scalar product. For each branch, this output of dimension N ×Kb is then upsampled to obtain a
segmented image of the same size as the input in order to get the prediction at step t: predt

i,b ∈ RKb×H×W

where b ∈ {1, . . . , t}. As a result, each decoder branch is specialized in a task where classes from other tasks

5

Under review as submission to TMLR

......
......Encoder

Encoder

Decoder branch 1

Decoder branch (t-1)

Decoder branch 1

Decoder branch (t-1)

Decoder branch t

{void, person, car,}

{sign, van, ...}

{sky, building, ...}

Input Image

Annotation

TILES at t

Model at (t-1)

Model at t

Annotation

Pseudo-labels

Pseudo-labels

Input Image

{sign, van, ...}

TILES at (t-1)

Predictions

{void, person, car,
sign, van,}

{sky, building...}

+ x

x

Projection patch

Projection class

x

{void, person, car,}

Figure 2: Training process of TILES (left) vs. KD-based SOTA methods (right). In TILES, the input
image is first processed by the encoder, e.g ViT-Tiny, then each of the task branches (the tiles) generates a
prediction map specific to the task it learned. LKD losses are computed between old and new predictions
of each old branch separately to retain old knowledge, while LCE is used to learn to predict new classes
via the new branch. LBC helps the differentiation and specification of each branch. In previous KD-based
CI-SS approaches, both LKD and LCE are applied on the same output with possibly opposed goals. The
architectural design is explained in sections 3.3, 3.4 and the learning strategy is detailed in section 3.6.

are considered as background. At step t, only the decoder weights of branch bt are changed while we freeze
old step branches.

3.5 Branch merging

During inference, the predictions made by each task branch predt
i,b are combined to generate the segmented

image on all classes predt
i such as presented in Figure 3. In particular, for each pixel, we merge the predictions

pb of the different branches to decide the final value p of that pixel using the following rules:

• if all task branches predict the pixel as background, i.e. {pb = 0, ∀b ∈ {1, . . . , T}}, then the final
label is the background: p← 0 (label for background);

• if only one branch predicts the pixel as a foreground class, i.e. ∃! b1 ∈ {1, . . . , T} such that {pb1 =
c, c ̸= 0} ∩ {pb = 0, ∀b ̸= b1}, then the final label is that foreground class: p← c;

• if two or more branches predict the pixel as different foreground classes i.e. ∃ b1, b2 ∈ {1, . . . , T}, b1 ̸=
b2 such that {pb1 = c1, c1 ̸= 0} ∩ {pb2 = c2, c2 ̸= 0} (red area in Figure 3), then the final label is
the one scoring the highest confidence which is computed as a weighted probability P (pb) ·γb, where
γb is the probability compensation weight for the branch b.

6

Under review as submission to TMLR

Encoder

Decoder
branch 1

 Decoder
branch 2

Branch Merging
Conflict between

branches

{person, ...}

{sofa, ...}

Figure 3: Branch merging module used during inference to merge two segmentation maps learned during
different steps. Illustration is on a PascalVoc image using TILES-S trained on the [15-1] overlapped scenario.
See sec. 3.5 for explanations.

Probability compensation weight: Background preponderance in images varies a lot depending on the
dataset e.g no background class in ADE20k and a very present background class in Pascal-VOC such as
detailed in sec. 4.1.1. It also highly depends on the nature of the task. For instance, the majority of pixels
are considered as background in learning step 6 of the 100 − 10 scenario, whereas background is much less
present in the first step. This preponderance underrates, in different ratios, the probabilities of foreground
classes, which causes different probability values of foreground classes while branch merging. To circumvent
this, our branch merging strategy takes into account the relative sparsity of task classes Cb by choosing
γb = #p(background)

#p(images) , where #p(images) and #p(background) are respectively the number of pixels of all
images used in train, and the corresponding number of background pixels.

3.6 Learning

Figure 2 illustrates the fundamental difference of loss computation between TILES and previous KD-based
approaches. At a given step t, TILES (left) has t branches specialized in predicting t different tasks. It is
trained to learn a new task on the new branch and to retain old tasks knowledge on old branches, while
differentiating between semantic concepts of different tasks.

Learn a new task: To learn the new task, the ground-truth yt
i contains only labels belonging to the new

set Ct as foreground while all other classes are set to background. Hence, LCE(predt
i,b=t, yt

i) is applied on
the branch t specific to the new task that estimates predt

i,b=t. The goal is to be able to distinguish between
the new classes and the old ones which are considered as background in this branch.

Retain knowledge on old tasks: Since the encoder weights are shared between all tasks and are updated
while learning the new task, we have to make sure that these weights will not change so much on the new
background pixels (containing old classes’ pixels) so that they will no longer fit the old tasks, leading to
catastrophic forgetting. Therefore, Lb

KD is computed for each branch b ∈ {1, .., t − 1} as a cross-entropy
on the output softmax probabilities of predictions predt

i,b and predt−1
i,b at current and previous steps only

on new background pixels (i.e. where yt
i = 0). Such as introduced in Incrementer (Shang et al. (2023)),

a LKD applied only on new background pixels instead of the whole image enables more elasticity on new
foreground pixels (yt

i ! = 0) to learn the new tasks and more rigidity on new background pixels which contain
old foreground classes (see ablation in sec. 4.3).

Differentiate between semantic concepts of different branches: Incrementer (Shang et al. (2023))
demonstrated that close semantic concepts seen in different tasks could be confused since they are learnt
in independent steps. This is further heightened in our case since we use totally independent decoders to
learn different tasks. To alleviate this problem we add a Branch Classification Loss LBC defined as the mean
values of the mask Mi = {mj,k, 1 ≤ j ≤W, 1 ≤ k ≤ H} for each image xi ∈ RH×W ×C , where:

7

Under review as submission to TMLR

mj,k =


0 if pb

j,k = 0 ∀ b ∈ {1, . . . , t}
0 if ∃! b1 ∈ {1, . . . , t}; {pb1

j,k = c, c ̸= 0} ∩ {pb
j,k = 0, ∀b ̸= b1}

1 otherwise

(1)

LBC = 1
WH

W∑
j=1

H∑
k=1

mj,k (2)

This loss encourages having at most one non-zero (foreground) value per pixel, alleviating confusion of close
semantic classes learnt at different steps (see ablation in sec. 4.3).

Total loss: For step 1 the total loss is the presented LCE(pred1
i,1, y1

i). For steps t > 1, the total loss Losst
i

is computed as follows, where λold > 0 to balance rigidity vs. elasticity of the model:

Losst
i = λold

∑
b∈[1:t−1]

Lt
KD(predt

i,b[yt
i = 0], predt−1

i,b [yt
i = 0])

︸ ︷︷ ︸
Loss on older tasks

+ LCE(predt
i,t, yt

i)︸ ︷︷ ︸
Loss on the new task

+ LBC(pred1
i,b, .., predt−1

i,b , predt
i,b)︸ ︷︷ ︸

Branch classification loss

(3)

Balancing losses: At the beginning of each training step t > 1, we initialize the model parameters using
those of the model at step t− 1. Hence, the different LKD losses are much smaller than the new LCE . This
causes the model to learn considerably the new task and forget the old one i.e. catastrophic forgetting, since
the LKD have minor impact in the final loss. To balance the rigidity vs. the elasticity of the model, we
set λold to equalize the two terms at the beginning of training of each step: λold = LCE(iteration=1)

LKD(iteration=1) . This
parameter takes into consideration the old model confidence on the old tasks and the nature of the tasks
(number of images, preponderance of the background) which cause losses variations. Differently, previous
KD-based methods (right in Figure 2) compute both LKD and LCE on the same output predicting all classes
seen in tasks {1, .., t} and balance them with a fixed weight per step which is a hyperparameter to find.

4 Experiments and results

4.1 Experimental settings

4.1.1 Datasets, protocols and scenarios

To evaluate the effectiveness of TILES, we use two commonly used datasets, Pascal-VOC and ADE20k, and
follow the evaluation protocols and scenarios associated.

Pascal-VOC (Everingham et al. (2010)): contains 11,530 images segmented and labeled into 20 possible
semantic classes plus a background class which is highly predominant. Indeed, the segmentation is object-
centric and 56% of all pixels are labeled as background. The results presented by previous methods differ
as some approaches include the background pixels in the mIoU computation where others do not. We chose
not to include it in the main table and we report the results of TILES while considering this value in the
appendix (see Tables 2 and 4). Following previous work by Yang et al. (2022), we evaluate our models
using both disjoint and overlapped protocols. In the disjoint protocol, each learning step contains a unique
set of images, whose pixels belong to classes seen either in the current or previous step. Differently, in the
overlapped protocol, each training step contains all the images that have at least one pixel of a novel class.
Thus, images may contain pixels of classes that will be learned in the future. Notice that, since the sets of
images are unique to each step in the disjoint protocol, the number of images used for training each step
is drastically lower than in the overlapped protocol. The following three scenarios are evaluated for both
protocols: [19 − 1], [15 − 5] and [15 − 1] referring to [number of classes seen at step 1 - number of classes
new seen at each step > 1 until reaching the 20 classes of Pascal-VOC].

ADE20k (Zhou et al. (2019)): is made of 20,000 images, each segmented into 150 possible classes.
The segmentation is exhaustive in this case: images are segmented into stuff classes (e.g , wall, sky) and

8

Under review as submission to TMLR

things (e.g , cars, person). The 0-labeled class does not carry semantic meaning, it only represents no
distinguishable pixels that should be omitted in the training process (see Zhou et al. (2017)). TILES was
trained to detect only the 150 classes (1-150). No clear details about how other methods consider this class.
Like previous works (Shang et al. (2023); Zhang et al. (2023)), models are evaluated on ADE20k with the
overlapped protocol since it is the more realistic one, on three scenarios: [100− 50], [100− 10] and [50− 50].

4.1.2 Implementation details

Similar to previous incremental approaches (Cermelli et al. (2020); Douillard et al. (2021)), random crops of
size 512×512 pixels are used for training for both datasets. Moreover, the incremental learning configurations
concerning the semantic classes learned at each step are retrieved from Cermelli et al. (2020). We optimize
the models using SGD with a constant learning rate of 1e-3 throughout the steps. The models are trained
with a batch size of 8, for 30 epochs for Pascal-VOC and for 64 epochs for ADE20k. The confidence weight
γb and the loss weight on old tasks λold are computed online (c.f as explained in sections 3.5 and 3.6).

We compute three variants of TILES with suffixes -B, -S and -T denoting Base, Small or Tiny. In fact, we
use a ViT (Dosovitskiy et al. (2021)) pre-trained on Imagenet (Deng et al. (2009)) for image classification
(-B, -S or -T) as encoder. TILES-T uses the same encoder and decoder as Segmenter-T (Strudel et al.
(2021)), resulting in 6.7M (million) parameters for one step and adding 0.4M parameters at each subsequent
step as we add a branch decoder for each increment. For scalability reasons, TILES-S and TILES-B use the
original ViT-B and ViT-S encoders respectively but adopt a custom decoder having a smaller hidden size of
256. This reduction helps limit the expansion of parameters for many step’s scenarios. A dense layer is used
to resize the resp. 384 and 768 hidden sizes output of ViT-S and ViT-B encoders to 256. Thus, TILES-S
(TILES-B) uses 23.8M (88.2M) parameters at the initial step with additional 1.8M parameters at each step
for both configurations. Table 5 details the number of parameters used for each scenario for TILES and
previous methods.

For Incrementer (Shang et al. (2023)), we use the same values reported in the their paper, where ViT-B
encoder and decoders are used. We perform the missing experiments for the ViT-S and ViT-T variants of
Incrementer for comparison with TILES variants using the same encoder backbones.

4.1.3 Evaluation metrics

The evaluation metric usually used for CI-SS is the mean Intersection over Union (mIoU) which is the mean
of the IoU per class. Results of the last step models are compared: a mIoU score is computed for classes
learned in the first step, another for those learnt in subsequent step(s), and the all column (in the tables
hereafter) represents the average mIoU over all classes.

Knowledge Remaining (KR): Different approaches use different models and backbones, which are based
on different joint performances (see Table 4): the non-incremental scenario in which the model learns from
the whole data at once which can be considered as an upper bound for a given architecture and backbone.
Hence, it is not fair to evaluate absolute all mIoU performances to evaluate the gain of the incremental
strategies, while using different architectures. To this end, we propose an additional evaluation metric: the
Knowledge Remaining (KR). This metric is actually inspired by work done by Hoyer et al. (2022) in domain
adaptation to fairly compare adaptation strategies while using different architectures and backbones. It is
calculated as the ratio of the performance in the incremental setup by the performance in the joint setup
for each scenario: KR = all

mIoU(Joint) .

4.2 Results

We compare in Table 1, Table 2 and Table 3 different state-of-the-art CI-SS methods on the predefined
scenarios and protocols of Pascal-VOC and ADE20k datasets. Since these methods are based on different
architectures and backbones, their corresponding joint setups have different values such as illustrated in
Table 4. Moreover, it is important to highlight that the memory footprint varies a lot depending on the
backbone, which has not been considered by previous CI-SS methods, by comparing absolute mIoU while
having different joint values and model sizes. For these reasons and to ensure a fair comparison between the

9

Under review as submission to TMLR

Backbone Method #P (M) 19-1 (2 steps) 15-5 (2 steps) 15-1 (6 steps)
1-19 20 all KR 1-15 16-20 all KR 1-15 16-20 all KR

ResNet-101 MicroSeg+ 66 78.8 14.0 75.7 97.4 80.4 52.8 73.8 95.0 80.1 36.8 69.8 89.8
Bg_Adapt+ 66 78.2 42.2 76.4 98.7 - - - - 77.6 45.9 79.4 90.4

ViT-B Incrementer 102 82.5 61.0 81.4 99.4 82.5 69.3 79.2 96.7 79.6 59.7 74.6 91.1
TILES-B 90 to 97 81.0 53.4 79.6 99.4 81.9 69.4 78.8 98.4 79.8 55.4 73.7 92.0

ViT-S Incrementer 26 76.4 47.5 75.0 95.4 74.0 56.1 69.5 88.4 72.6 46.1 66.0 84.0
TILES-S 26 to 33 79.1 53.3 77.8 99.0 79.7 65.3 76.1 96.8 77.1 47.8 69.8 88.8

ViT-T Incrementer 7 67.2 39.7 65.8 90.4 56.7 38.0 52.0 71.4 53.3 20.0 45.0 61.8
TILES-T 7 to 9 73.6 38.0 71.8 98.6 71.7 47.2 65.6 90.1 66.3 21.1 55.0 75.5

Table 1: CI performances (mIoU and KR in %) on Pascal-VOC for different overlapped scenarios. Best KR
per backbone per scenario in bold. + mIoU computation is biased by considering background IoU. #P is
the number of parameters (in millions). A more complete comparison is in the appendix (Table 1).

Backbone Method #P (M) 19-1 (2 steps) 15-5 (2 steps) 15-1 (6 steps)
1-19 20 all KR 1-15 16-20 all KR 1-15 16-20 all KR

ResNet-101 RBC 66 76.4 45.8 74.9 96.4 75.1 49.7 68.8 88.5 61.7 19.5 51.1 65.8
RCIL+ 66 - - - - 75.0 42.8 67.3 87.0 66.1 18.2 54.7 70.7

ViT-B Incrementer 102 82.4 64.2 81.5 99.5 81.6 62.2 76.8 93.8 81.4 57.1 75.3 91.9
TILES-B 90 to 97 80.5 55.2 79.2 98.9 77.6 49.3 70.5 88.0 74.1 35.7 64.5 80.5

ViT-S Incrementer 26 76.4 19.9 73.6 93.6 75.2 26.9 63.1 80.3 71.9 38.6 63.6 80.9
TILES-S 26 to 33 79.1 51.5 77.7 98.9 76.1 47.7 69.0 87.8 73.9 35.1 64.2 81.7

ViT-T Incrementer 7 68.9 13.6 66.1 90.8 65.7 22.9 55.0 75.5 59.1 14.2 47.9 65.8
TILES-T 7 to 9 72.9 44.5 71.5 98.2 68.5 37.4 60.7 83.4 61.6 26.5 51.7 71.0

Table 2: CI performances (mIoU and KR in %) on Pascal-VOC for different disjoint scenarios. Best KR per
backbone per scenario in bold. + mIoU computation is biased by considering background IoU. #P is the
number of parameters (in millions). A more complete comparison is in the appendix (Table 3).

Backbone Method #P (M) 100-50 (2 steps) 100-10 (6 steps) 50-50 (3 steps)
1-100 101-150 all KR 1-100 101-150 all KR 1-50 51-150 all KR

ResNet-101
UCD 66 40.4 27.3 36.0 92.5 28.6 12.4 23.2 59.6 39.3 22.2 27.9 71.7
RBC 66 42.9 21.5 35.8 92.0 39.0 21.7 33.2 85.3 49.6 26.3 34.1 87.7

Bg_Adapt+ 66 42.0 23.0 35.7 91.8 41.1 23.1 35.2 90.5 47.9 26.5 33.7 86.6

ViT-B Incrementer 102 49.4 35.6 44.8 93.1 48.5 34.6 43.6 91.3 56.2 37.8 43.9 91.3
TILES-B 90 to 97 51.9 39.3 47.7 99.2 50.6 18.6 39.9 82.7 58.9 41.2 47.1 97.9

ViT-S Incrementer 26 48.7 29.9 42.4 90.6 42.3 15.1 33.2 70.9 55.7 32.6 40.3 86.1
TILES-S 26 to 33 50.2 34.1 44.8 98.2 46.7 15.8 36.4 79.8 55.5 37.4 43.4 95.2

ViT-T Incrementer 7 47.6 8.6 34.6 89.9 34.1 8.6 24.6 63.9 49.9 23.4 32.2 83.6
TILES-T 7 to 9 43.1 24.8 37.0 96.1 36.8 16.8 30.1 78.2 50.1 28.1 35.4 91.9

Table 3: CI performances (mIoU and KR in %) on ADE20k for different overlapped scenarios. Best KR per
backbone per scenario in bold. + mIoU computation is biased by considering background IoU. #P is the
number of parameters (in millions). A more complete comparison is in the appendix (Table 5).

different incremental techniques, we focus on comparing the knowledge remaining (KR) which evaluates the
capacity of retaining old knowledge while learning new tasks, regardless of the used architecture. The goal
here is to fairly compare the different approaches, and to propose a new light-weight option for use-cases with
severe memory constraints. Note that methods with + consider the background in their mIoU computation
which distorts results since generally all methods have very good background IoU .

On the one hand, we can notice in the three tables and their complete versions in the appendix that
previous ViT based approaches assure in general better absolute and KR performances than the CNN
based approaches. In addition to the incremental techniques used, this is also due to the fact that visual
transformers are better continual learners than CNNs such as discussed in sec. 2.3, to the better joint values
and to the bigger memory footprint used. In fact, using more parameters improves the models’ capacity
to encompass the old and the new knowledge with minimum forgetting. Nevertheless, despite using less
parameters than previous ViT based approaches thanks to the smaller decoder (see sec. 4.1.2 for details),
TILES-B is able to achieve interesting results both datasets.

10

Under review as submission to TMLR

Incrementer

TILES

ViT-B ViT-S ViT-T ViT-TViT-SViT-B

Frame GT GTFrame

Figure 4: Samples of frames, their Ground Truth (GT) annotations, and corresponding predictions using
Incrementer and TILES with 3 different backbones each for the Pascal-VOC 15-1 overlapped scenario.

On the other hand, we compare Incrementer (Shang et al. (2023)) with TILES using smaller backbones to
study behaviors when severe memory constraints are applied. We choose Incrementer as a reference because
it has best results among most scenarios on both ADE20k and Pascal-VOC datasets, and because it uses
the same semantic segmentation base method as TILES: Segmenter (Strudel et al. (2021)). We can see that
fine-tuning parameters when using smaller backbones results in a big performance drop since the limited
number of parameter is not able to encompass both old and new knowledge while ensuring a good rigidity
vs. elasticity trade-off. As an alternative, TILES-S and TILES-T provide always better performances, with
a KR percentage points (p.p.) difference ranging from: i) for ViT-S from 0.8 to 8.4 for Pascal-VOC and
from 7.6 to 9.1 for ADE20k, and ii) for ViT-T from 5.2 to 18.4 for Pascal-VOC and from 6.2 to 14.3 for
ADE20k. Indeed, the performance gap between TILES and Incrementer is heightened for smaller backbones.
These improvements are especially thanks to the adopted expanding mechanism which seems necessary to
learn new tasks without big forgetting, while adding a limited number of parameters at each step. Indeed,
depending on the balance between the old and new losses, applying smaller backbones to Incrementer seems
to either cause catastrophic forgetting or to limit learning new tasks. This can be seen in Figure 4 that
TILES maintains relatively strong performance with smaller backbones, whereas Incrementer exhibits a
more significant performance drop, especially with the ViT-T backbone.

Figure 1 illustrates the performance of TILES and Incrementer according to the number of parameters
of the used model for the Pascal-VOC 15-5 overlapped scenario. It demonstrates that TILES strongly
outperforms Incrementer when considering models with comparable sizes. We also include error bars in this
figure for TILES demonstrating the small variations through iterations. Similar figures are included in the
appendix for the other scenarios and datasets (Figures 1, 2, and 3). Note that, despite adopting an expansion
mechanism, the number of parameters added in all these cases is paramount (see Table 5 for details of number
of parameters and the Table 6 in the appendix for further memory analysis). In fact, TILES-B uses less
parameters than other ViT-B and SwinB based approaches thanks to the light-weight decoder used. For
TILES-S and TILES-T, we can prove efficiency by providing major improvements compared to Incrementer
while adding 1.8M and 0.4M parameters per step respectively.

It is also important to highlight that TILES-S achieves the same absolute results as Incrementer (ViT-B)
for the [100− 50] and [50− 50] ADE20k protocols despite displaying different joint performances and while
using up to 4 times fewer parameters (25 vs. 102) thanks to the adopted expanding mechanism along with
the corresponding losses and branch merging module. Similarly, TILES-T achieves and even surpasses CNN
based approaches in some cases, despite the smaller joint performances and while using up to 9 times fewer
parameters (7.1 vs. 66). TILES-T also provides similar or better absolute performances compared to SwinB-
based methods while using up to 14 times fewer parameters (7.1 vs. 104) for the same ADE20k protocols.

11

Under review as submission to TMLR

Model Backbone Pascal-VOC ADE20k
Deeplab-v3 ResNet-101 77.4 38.9

Mask2Former ResNet-101 - 43.1
Deeplab-v3 SwinB 82.7 39.1
Incrementer ViT-B 81.9 48.1

TILES-B ViT-B 80.1 48.1
Incrementer ViT-S 78.6 46.8

TILES-S ViT-S 78.6 45.6
Incrementer ViT-T 72.8 38.5

TILES-T ViT-T 72.8 38.5

Table 4: Performance (mIoU in %) of the joint setting of different models and backbones for Pascal-VOC
and ADE20k datasets.

Model Backbone 1 step 2 steps 3 steps 6 steps
Deeplab-v3 ResNet-101 66 66 66 66

Mask2Former ResNet-101 63 63 63 63
Deeplab-v3 SwinB 104 104 104 104
Incrementer ViT-B 102 102 102 102

TILES-B ViT-B 88 90 92 97
Incrementer ViT-S 26 26 26 26

TILES-S ViT-S 24 26 27 33
Incrementer ViT-T 6.7 6.7 6.7 6.7

TILES-T ViT-T 6.7 7.1 7.5 8.7

Table 5: Number of parameters (in million) used with relation to the number of steps of the scenario.

This proves the over-allocation of parameters by previous CI-SS methods and the importance of studying
the efficacy of models for highly constrained tasks.

Moreover, despite being an expanding method, TILES-T shows a good scalability with the number of in-
crements (239 steps would be necessary to surpass the 102M parameters used by previous ViT-based ap-
proaches). Therefore, TILES-T is convenient for applications with extremely severe memory constraints or
needing a large number of increments. Besides, TILES-S shows closest performances to previous ViT-based
methods while keeping the number of parameters lower until an expansion of 43 increments. Thus, TILE-
S is adapted to applications requiring a lower number of increments, and where improved performance is
more important than severe memory constraints. In the absence of prior work using small backbones, the
main goal of proposing TILES is to offer a first compelling alternative for scenarios with certain conditions.
Indeed, the choice of architecture depends on the acceptable trade-off between performance and resource
usage, as well as the maximum number of increments required by each application. However, beyond the
239 threshold, we acknowledge that we cannot assert whether TILES-T or Incrementer (ViT-B) is the more
effective choice. While scenarios with increments exceeding these thresholds cause the augmentation of the
memory footprint needed for TILES, we have no guarantee that Incrementer can be the better choice and
whether it can handle catastrophic forgetting while updating both the encoder and the decoder parameters
for hundreds or thousands of increments. We encourage the research community for a deeper investigation
of these use cases.

4.3 Ablation study

Method #P (M) 100-50 (2 steps) 100-10 (6 steps) 50-50 (3 steps) Joint1-100 101-150 all KR 1-100 101-150 all KR 1-50 51-150 all KR
TILES-S (SS-D) 30 to 46 49.8 35.2 44.9 95.9 42.1 31.6 38.6 82.5 56.1 41.2 43.6 93.2 46.8
TILES-S (ours) 26 to 33 50.2 34.1 44.8 98.2 46.7 15.8 36.4 79.8 55.5 37.4 43.4 95.2 45.6

Table 6: Influence of decoder architecture on TILES-S performance (mIoU and KR in %) on 3 overlapped
scenarios on ADE20k. SS-D denotes Segmenter-S decoder. #P is the number of parameters (in millions).

12

Under review as submission to TMLR

TILES-S using Segmenter-S decoder: In Table 6, we compare ADE20k results using TILES-S but with
two different decoders: Segmenter-S decoders which add 4M parameters at each step and our light-weight
decoders adding 1.8M parameters per step. It demonstrates that, despite the much bigger Segmenter-S
decoder, the absolute mIoU improvement compared to the TILES-S decoder is null or minor compared to
the memory footprint increase (ranging from 15% to 48%). This proves that the adopted decoder architecture
is sufficient to encompass the new knowledge while adding a limited memory footprint at each step.

Ablation λold LKD γb LBC 1-15 16-20 all
TILES ̸= 1 on new background pixels ̸= 1 ✓ 71.7 47.2 65.6
A1 = 1 on new background pixels ̸= 1 ✓ 67.2 55.0 64.2
A2 ̸= 1 on all pixels ̸= 1 ✓ 71.5 42.6 64.3
A3 ̸= 1 on new background pixels = 1 ✓ 71.0 45.1 64.5
A4 ̸= 1 on new background pixels ̸= 1 ✗ 72.4 42.7 65.0

Table 7: Ablation study of loss balancing λold (A1), applying LKD on all pixels or only on new background
pixels (A2), probability compensation weight γb (A3) and binary classification loss LBC (A4) on TILES-T
performance (mIoU in %) on Pascal-VOC [15-5] disjoint scenario.

Balancing losses: Table 7 (A1 and TILES) shows that loss balancing in TILES (λold ̸= 1 as detailed) is
beneficial (+1.4 p.p. mIoU for TILES-T on Pascal-VOC [15 − 5] disjoint). We can notice that equalizing
losses at the beginning, alleviates forgetting and creates a better rigidity vs. elasticity trade-off. This can
be even more important for several-step scenarios where the model forgets old knowledge at each increment.

Applying LKD on all pixels: Table 7 (A2 and TILES) proves that applying the knowledge distillation
loss LKD only on new background pixels improves significantly the new classes performances compared to
applying this loss to whole image. In fact, this technique provides more elasticity on the pixels corresponding
to new classes by retaining knowledge only on the new background pixels that could be potentially old classes
learnt in old steps.

Compensation weight of probability for branch merging: Table 7 (A3 and TILES) shows that
compensating the branch prediction probabilities is beneficial as it gives more weight to ignored branches
i.e. in this case the new branch as the training-set for this step is smaller. Same conclusions can be found
for the ADE20k 100-50 scenario with −1.3 mIoU p.p. for TILES-T and −0.4 p.p. for TILES-S.

Impact of branch classification loss: Since different decoders are used for different tasks for TILES,
semantically close concepts could be learnt by separate decoders causing a confusion between them and
thus a performance drop (see sec. 3.6). Table 7 (A4 and TILES) shows the big degradation of new classes
performances if the branch classification loss between the branches LBC is retrieved. Moreover, removing
this component from TILES-T for the ADE20k 100-50 scenario causes −1.9 mIoU p.p. drop.

5 Conclusion

In this work, we elaborated a complete comparison across previous SOTA CI-SS methods based on different
backbones. While different performance trends can be remarked, all these methods use quite large memory
footprint without any study about their efficiency with regards this aspect. Thus, we proposed TILES, a
new CI learning method based on a ViT architecture for SS and specifically convenient for use cases with
severe memory constraints. Indeed, we demonstrated a big performance drop for a previous SOTA method
when smaller backbones are used, unlike TILES which is more adapted for these cases. Moreover, TILES
can even outperform previous models which use much bigger backbones (up to 14× bigger) when comparing
absolute performance. Since TILES proposes the first lightweight method for CI-SS, we hope that this work
stimulates the AI community’s interest to study models efficiency for CI-SS.

References
Fabio Cermelli, Massimiliano Mancini, Samuel Rota Bulò, Elisa Ricci, and Barbara Caputo. Modeling

the background for incremental learning in semantic segmentation. In 2020 IEEE/CVF Conference on

13

Under review as submission to TMLR

Computer Vision and Pattern Recognition (CVPR), pp. 9230–9239, 2020. doi: 10.1109/CVPR42600.2020.
00925.

Fabio Cermelli, Matthieu Cord, and Arthur Douillard. Comformer: Continual learning in semantic and
panoptic segmentation. IEEE/CVF Computer Vision and Pattern Recognition Conference, 2023.

Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous convolution
for semantic image segmentation. CoRR, abs/1706.05587, 2017. URL http://arxiv.org/abs/1706.
05587.

Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, and Rohit Girdhar. Masked-attention
mask transformer for universal image segmentation. In 2022 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 1280–1289, 2022. doi: 10.1109/CVPR52688.2022.00135.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil
Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=YicbFdNTTy.

Arthur Douillard, Yifu Chen, Arnaud Dapogny, and Matthieu Cord. PLOP: Learning without Forgetting
for Continual Semantic Segmentation. In CVPR, Nashville, United States, 2021. URL https://hal.
archives-ouvertes.fr/hal-03503831.

Arthur Douillard, Alexandre Ramé, Guillaume Couairon, and Matthieu Cord. DyTox: Transformers for
Continual Learning with DYnamic TOken eXpansion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2022.

Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John M. Winn, and Andrew Zisserman.
The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis., 88(2):303–338, 2010. URL
http://dblp.uni-trier.de/db/journals/ijcv/ijcv88.html#EveringhamGWWZ10.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image Recognition.
In Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR ’16, pp.
770–778. IEEE, June 2016. doi: 10.1109/CVPR.2016.90. URL http://ieeexplore.ieee.org/document/
7780459.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015. URL
http://arxiv.org/abs/1503.02531.

Lukas Hoyer, Dengxin Dai, and Luc Van Gool. Daformer: Improving network architectures and training
strategies for domain-adaptive semantic segmentation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 9924–9935, June 2022.

Beomyoung Kim, Joonsang Yu, and Sung Ju Hwang. Eclipse: Efficient continual learning in panoptic
segmentation with visual prompt tuning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 3346–3356, June 2024.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A. Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis, Claudia
Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting in neural networks.
Proceedings of the National Academy of Sciences, 114(13):3521–3526, March 2017.

Duo Li, Guimei Cao, Yunlu Xu, Zhanzhan Cheng, and Yi Niu. Technical report for ICCV 2021 challenge
sslad-track3b: Transformers are better continual learners. CoRR, abs/2201.04924, 2022. URL https:
//arxiv.org/abs/2201.04924.

14

http://arxiv.org/abs/1706.05587
http://arxiv.org/abs/1706.05587
https://openreview.net/forum?id=YicbFdNTTy
https://hal.archives-ouvertes.fr/hal-03503831
https://hal.archives-ouvertes.fr/hal-03503831
http://dblp.uni-trier.de/db/journals/ijcv/ijcv88.html#EveringhamGWWZ10
http://ieeexplore.ieee.org/document/7780459
http://ieeexplore.ieee.org/document/7780459
http://arxiv.org/abs/1503.02531
https://arxiv.org/abs/2201.04924
https://arxiv.org/abs/2201.04924

Under review as submission to TMLR

Xialei Liu, Chenshen Wu, Mikel Menta, Luis Herranz, Bogdan Raducanu, Andrew Bagdanov, Shangling
Jui, and Joost Weijer. Generative feature replay for class-incremental learning. In CVPR Workshop, pp.
915–924, 06 2020. doi: 10.1109/CVPRW50498.2020.00121.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), 2021.

David Lopez-Paz and Marc' Aurelio Ranzato. Gradient episodic memory for continual learn-
ing. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
f87522788a2be2d171666752f97ddebb-Paper.pdf.

A. Maracani, U. Michieli, M. Toldo, and P. Zanuttigh. Recall: Replay-based continual learning in semantic
segmentation. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 7006–7015,
Los Alamitos, CA, USA, Oct 2021. IEEE Computer Society. doi: 10.1109/ICCV48922.2021.00694. URL
https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00694.

Michael Mccloskey and Neil J. Cohen. Catastrophic interference in connectionist networks: The sequential
learning problem. The Psychology of Learning and Motivation, 24:104–169, 1989.

Umberto Michieli and Pietro Zanuttigh. Continual semantic segmentation via repulsion-attraction of sparse
and disentangled latent representations. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 1114–1124, June 2021.

Lorenzo Pellegrini, Gabriele Graffieti, Vincenzo Lomonaco, and Davide Maltoni. Latent replay for real-
time continual learning. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 10203–10209, 2020. doi: 10.1109/IROS45743.2020.9341460.

Minh Hieu Phan, The-Anh Ta, Son Lam Phung, Long Tran-Thanh, and Abdesselam Bouzerdoum. Class
similarity weighted knowledge distillation for continual semantic segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16866–16875, June
2022.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lampert. icarl: Incremen-
tal classifier and representation learning. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 5533–5542, 2017. doi: 10.1109/CVPR.2017.587.

Chao Shang, Hongliang Li, Fanman Meng, Qingbo Wu, Heqian Qiu, and Lanxiao Wang. Incrementer:
Transformer for class-incremental semantic segmentation with knowledge distillation focusing on old class.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
7214–7224, June 2023.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep genera-
tive replay. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
0efbe98067c6c73dba1250d2beaa81f9-Paper.pdf.

Konstantin Shmelkov, Cordelia Schmid, and Karteek Alahari. Incremental Learning of Object Detectors
without Catastrophic Forgetting. In IEEE International Conference on Computer Vision (ICCV), pp.
3420–3429, Venice, Italy, October 2017. doi: 10.1109/ICCV.2017.368. URL https://hal.inria.fr/
hal-01573623.

Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia Schmid. Segmenter: Transformer for Semantic
Segmentation. In International Conference on Computer Vision (ICCV), Virtual, France, October 2021.
URL https://hal.archives-ouvertes.fr/hal-03481207.

15

https://proceedings.neurips.cc/paper_files/paper/2017/file/f87522788a2be2d171666752f97ddebb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/f87522788a2be2d171666752f97ddebb-Paper.pdf
https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00694
https://proceedings.neurips.cc/paper_files/paper/2017/file/0efbe98067c6c73dba1250d2beaa81f9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/0efbe98067c6c73dba1250d2beaa81f9-Paper.pdf
https://hal.inria.fr/hal-01573623
https://hal.inria.fr/hal-01573623
https://hal.archives-ouvertes.fr/hal-03481207

Under review as submission to TMLR

Zhengyuan Xie, Haiquan Lu, Jia-wen Xiao, Enguang Wang, Le Zhang, and Xialei Liu. Early preparation
pays off: New classifier pre-tuning for class incremental semantic segmentation. In European Conference
on Computer Vision, pp. 183–201, 2024.

Shipeng Yan, Jiangwei Xie, and Xuming He. DER: Dynamically expandable representation for class incre-
mental learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2021.

Guanglei Yang, Enrico Fini, Dan Xu, Paolo Rota, Mingli Ding, Moin Nabi, Xavier Alameda-Pineda, and
Elisa Ricci. Uncertainty-aware contrastive distillation for incremental semantic segmentation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2022. doi: 10.1109/tpami.2022.3163806. URL
https://doi.org/10.1109%2Ftpami.2022.3163806.

Anqi Zhang and Guangyu Gao. Background adaptation with residual modeling for exemplar-free class-
incremental semantic segmentation. 2024.

Chang-Bin Zhang, Jia-Wen Xiao, Xialei Liu, Ying-Cong Chen, and Ming-Ming Cheng. Representation
compensation networks for continual semantic segmentation. In 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2022a.

Zekang Zhang, Guangyu Gao, Zhiyuan Fang, Jianbo Jiao, and Yunchao Wei. Mining unseen classes via re-
gional objectness: A simple baseline for incremental segmentation. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp.
24340–24353. Curran Associates, Inc., 2022b. URL https://proceedings.neurips.cc/paper_files/
paper/2022/file/99b419554537c66bf27e5eb7a74c7de4-Paper-Conference.pdf.

Zekang Zhang, Guangyu Gao, Jianbo Jiao, Chi Harold Liu, and Yunchao Wei. Coinseg: Contrast inter- and
intra- class representations for incremental segmentation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 843–853, October 2023.

Hanbin Zhao, Hui Wang, Yongjian Fu, Fei Wu, and Xi Li. Memory efficient class-incremental learning for
image classification. IEEE Transactions on Neural Networks and Learning Systems, PP:1–12, 05 2021.
doi: 10.1109/TNNLS.2021.3072041.

Hanbin Zhao, Fengyu Yang, Xinghe Fu, and Xi Li. Rbc: Rectifying the biased context in continual semantic
segmentation. In Shai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, and Tal
Hassner (eds.), Computer Vision – ECCV 2022, pp. 55–72, Cham, 2022. Springer Nature Switzerland.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene pars-
ing through ade20k dataset. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), July 2017.

Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio Torralba.
Semantic understanding of scenes through the ADE20K dataset. Int. J. Comput. Vis., 127(3):302–321,
2019. URL http://dblp.uni-trier.de/db/journals/ijcv/ijcv127.html#ZhouZPXFBT19.

16

https://doi.org/10.1109%2Ftpami.2022.3163806
https://proceedings.neurips.cc/paper_files/paper/2022/file/99b419554537c66bf27e5eb7a74c7de4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/99b419554537c66bf27e5eb7a74c7de4-Paper-Conference.pdf
http://dblp.uni-trier.de/db/journals/ijcv/ijcv127.html#ZhouZPXFBT19

	Introduction
	Related work
	Class-incremental learning
	Class-incremental semantic segmentation
	Positioning of our method

	Method
	Problem definition
	Overview
	Encoder
	Decoder incremental branches
	Branch merging
	Learning

	Experiments and results
	Experimental settings
	Datasets, protocols and scenarios
	Implementation details
	Evaluation metrics

	Results
	Ablation study

	Conclusion

